
Lecture 5

General Initial Surface — The Cauchy Problem

We use the Schwartz notation for a general qth order linear differential equation for a function u :
D⊂Rn 7→ Rn

Lu =
∑
|α|≤q

Aα(x)∂αu = B(x) (1)

or put in form

Lu =
∑
|α|=q

Aα(x)∂αu+ g(x, {∂αu}|α|<q) (2)

We write (2) explicitly

Lu(x1, x2, .., xn) =

α1∑
k=0

α2∑
k=0

...

αn∑
k=0︸ ︷︷ ︸

α1+α2+...αn≤q
αn<q

A(α1,α2,..,αn)(x)∂α1
x1
∂α2
x2
..∂αn

xn
u(x) + g(x, {∂αu}∑n

i αi≤q−1)

Definition 1 (Cauchy Problem). The Cauchy problem consists of finding a solution u(x) for (1) or
(2) in which the Cauchy data (general initial condition) is defined on a hyper-surface S ⊂ Rn given
by

φ(x1, x2, ..., xn) = 0 (3)

where φ ∈ Cq and the surface should be regular in the sense that

5φ 6= 0

Definition 2. (Cauchy Data) The Cauchy data on S for a qth order equation consists of the deriva-
tives of u of orders less than or equal to q − 1

The definition above essentially means that we are to evaluate the derivatives of u with respect to
xn on S under the derivative order constraint indicated above. It must be understood that such data
cannot be arbitrarily chosen, as they must satisfy certain compatibility conditions, for all functions
regular near S. We will explain the phrase ”computability conditions” through the following example
below. We are in aim to find a solution u near S which has these Cauchy data on S. We choose
xn = t, which is usual said to be the ’time’ derivative.

Consider
utt − ut − ux = 0, S = {x ∈ Rn : t = 0} (4)

The hyper-surface S is a special case in which it defines subspace R × {t = 0} ⊂ R2 where all t
components are zero. In particular S : φ(t) = 0 satisfying

5φ = (0, 1) 6= 0R2

The derivatives of u required by Definition 2 which are to be evaluated on S (that is t = 0) for order
k = 0, 1 (≤ q − 1)

u(x, 0) = ψ0(x), ut(x, 0) = ψ1(x) (5)
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ux(x, 0) = ϕ(x) = ∂xψ0(x)︸ ︷︷ ︸
condition

(6)

where ψk, ϕ are functions that only depend on x which are prescribed on S. Notice above that the
first and third equations must be consistent with each other; this is what we mean by compatibility
condition.

Definition 3. We call S noncharacteristic is we can get all ∂αu for |α| = q on S from a linear
algebraic system consisting of the computability conditions and the differential equation (1) or (2)
taken on S. We call S characteristic if it is not noncharacteristic.

We aim to find an algebraic criterion for characteristic surfaces. We will be referring to the example
above with its defined surface S. In general the Cauchy data consists of ∂βu with |β| ≤ q−1 evaluated
on S. In our case u(x, 0), ut(x, 0) ux(x, 0). We call the derivates with respect to xn (in our case t) of
orders less than or equal to q − 1 the ’normal’ derivatives on S. That is

∂knu = ∂kt u = ψk(x1, x2, ..., xn) for k = 0, ..., q − 1 x ∈ S (7)

In our example that would be equations in (5). Meanwhile the rest of derivatives we have on S

∂βu = ∂β1

1 ∂β2

2 ...∂
βn−1

n−1 ψβn βn ≤ q − 1 (8)

which is in our case equation (6). We notice for |β| ≤ q − 1 we have all the compatibility conditions
expressing the Cauchy data in terms of the normal derivatives (7).
Consider now index

α∗ = (0, ..., 0, q)

We see (using our example) utt cannot be expressed by (6), since the derivatives vanish. This shows
that it is essential to have the PDE (1) for it is then used to express utt(x, 0) in terms of (8) (i.e the
Cauchy data). Note that if we had other 2nd order derivatives of u they would be included in (8).
We come to our conclusion that for us to uniquely determine u near S, we require Aα∗ 6= 0; in our
exampleα∗ = (0, 2) so A(0,2)utt is the part of (1) where we have Aα∗ = 1 6= 0. This is the case of (1)
linear, for if it is quasi-linear, we would need to know ψk as it multiplies with ∂qnu.
We saw how the nature of S imposes conditions on coefficients of derivatives of u satisfying |α| = q.
The Characteristic form is defined

C(ξ) =
∑
|α|=q

Aαξ
α ξ ∈ Rn (9)

We require
C(5φ) 6= 0 (10)

We rewrite (2) by combining the leading derivative variable xn to include it in the sum∑
|α|=q

Aα(x)∂αu+ g(...) = 0, with Aβ(0) 6= 0, β = (0, 0..., 0, q). (11)

What this means is that we want this PDE to be of order q, so we want conditions Aβ(0) 6= 0

Now consider a general analytic surface: A mapping operator Φ that is invertible in a nbhd of s
and is analytic:

Φ : Rn 7→ Rn
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Φ(x) = (φ1(x), φi(x), .., φn(x)) yi = φi(x) (12)

D ⊂ Rn we define the pre-image of D by S = Φ−1(D) = {x ∈ Rn : φn(x) = 0} in nbhd of 0. We
derive partial derivative expressions by chain rule

∂u

∂xi
=

∂u

∂yk

∂yk
∂xi

,
∂2u

∂xi∂xj
=

∂2u

∂yk∂yl

∂yk
∂xi

∂yl
∂xj

+
∂u

∂yk

∂2yk
∂xi∂j

(13)

∑
|α|=q

Aα∂
α
x u =

∑
|α|=q

Bα∂
α
y u+ lower terms. (14)

In the specific case of α = β

Bβ =
∑
|α|=q

Aα

(
∂φn
∂xi

)α1

...

(
∂φn
∂xn

)αn

. (15)

We want Bβ(0) 6= 0.

C(x, ξ) =
∑
|α|=q

Aα(x)ξα (ξ ∈ Rn). (16)

Characteristic form of (11)

Definition 4. If the surface S = {x : φn(x) = 0} : 5φ(x) 6= 0, satisfies C(x,5φ(x)) = 0, then S is
called a characteristic at x.

{ξ : C(x, ξ) = 0} − Characteristic cone at x

Cauchy problem for (11) has a unique analytic solution near s, if S is nowhere characteristic.
Eg. Laplace :

C(x, ξ) =

n∑
i=1

ξ2i

No characteristic surface.
Wave:

C(x, ξ) = ξ2n −
n−1∑
i=1

ξ2i .

Characteristic surface is a cone.
Heat:

C(x, ξ) =

n−1∑
i=1

ξ2i

Characteristic cone = {x : x1 = ...xn−1 = 0} so Characteristic surface = {x : xn = const}
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Transport ∑
i

αi(x)∂iu = f, C(x, ξ) =
∑
i

αi(x)ξi C(x,5φ(x)) = 0 (17)

—- Suppose S is characteristic∑
|α|=q,αn<q

Bα∂
α
y u+ lot = 0, initial data u , ∂mu, ...∂

q−1
m u

Constraint in initial data.

C −K theorem is local.
C −K works on analytic setting.
Analytic data =⇒ unique analytic solution.
Analytic data =⇒ non-analytic sol. unique for linear equations.
Non-analytic data : No general theorey.

Initial data ψ 7→ u = S(ψ) solution. ψ is continuous =⇒ ∀ε > 0, ∃ψε ∈ Cω,

‖ψ − ψε‖ ≤ ε, uε = S(ψε).

Is there u s.t uε → u as ε→ 0?

Does ψ ≈ φ implies S(ψ) ≈ S(φ)?
In general, no.

Eg. ∂2t u+ ∂2xu = 0 u(x, 0) = 0, ut(x, 0) = sin(nx)
n :

Proof. Assume solution form
u(x, t) = k(t)sin(nx).

k′′ − n2k = 0 =⇒ k(t) = A expnt+B exp−nt

u(x, t) =
sin(nx)

n2
(ent − e−nt) (18)

We see that although for small values of x (ie. values near zero) our initial conditions are small,
however the solution about small values of x are not bounded due to the exponential functions of t.
This problem is not well posed.

Hyperbolic Equations : transport, Wave.
Elliptic Equations: laplace.
Parabolic : heat
Dispersive: Schnodinger.
—

∑
|α|=q

Aα∂
αu+ g(...) = 0
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Types of first order PDE’s
Aα = Aα(x) semilinear

Aα = Aα(x, {∂βu}|β|<q) quasilinear∑
|α|≤q

Aα(x)∂αu = f linear.

Aα(x) = const cont.ceoff.
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